### Search

Enter search terms or a module, class or function name.

# pandas.core.window.Expanding.corr¶

Expanding.corr(self, other=None, pairwise=None, **kwargs)[source]

Calculate expanding correlation.

Parameters: other : Series, DataFrame, or ndarray, optional If not supplied then will default to self. pairwise : bool, default None Calculate pairwise combinations of columns within a DataFrame. If other is not specified, defaults to True, otherwise defaults to False. Not relevant for Series. **kwargs Unused. Series or DataFrame Returned object type is determined by the caller of the expanding calculation.

Series.expanding
Calling object with Series data.
DataFrame.expanding
Calling object with DataFrames.
Series.corr
Equivalent method for Series.
DataFrame.corr
Equivalent method for DataFrame.
expanding.cov
Similar method to calculate covariance.
numpy.corrcoef
NumPy Pearson’s correlation calculation.

Notes

This function uses Pearson’s definition of correlation (https://en.wikipedia.org/wiki/Pearson_correlation_coefficient).

When other is not specified, the output will be self correlation (e.g. all 1’s), except for DataFrame inputs with pairwise set to True.

Function will return NaN for correlations of equal valued sequences; this is the result of a 0/0 division error.

When pairwise is set to False, only matching columns between self and other will be used.

When pairwise is set to True, the output will be a MultiIndex DataFrame with the original index on the first level, and the other DataFrame columns on the second level.

In the case of missing elements, only complete pairwise observations will be used.

Examples

The below example shows a rolling calculation with a window size of four matching the equivalent function call using numpy.corrcoef().

>>> v1 = [3, 3, 3, 5, 8]
>>> v2 = [3, 4, 4, 4, 8]
>>> fmt = "{0:.6f}"  # limit the printed precision to 6 digits
>>> # numpy returns a 2X2 array, the correlation coefficient
>>> # is the number at entry 
>>> print(fmt.format(np.corrcoef(v1[:-1], v2[:-1])))
0.333333
>>> print(fmt.format(np.corrcoef(v1[1:], v2[1:])))
0.916949
>>> s1 = pd.Series(v1)
>>> s2 = pd.Series(v2)
>>> s1.rolling(4).corr(s2)
0         NaN
1         NaN
2         NaN
3    0.333333
4    0.916949
dtype: float64


The below example shows a similar rolling calculation on a DataFrame using the pairwise option.

>>> matrix = np.array([[51., 35.], [49., 30.], [47., 32.],    [46., 31.], [50., 36.]])
>>> print(np.corrcoef(matrix[:-1,0], matrix[:-1,1]).round(7))
[[1.         0.6263001]
[0.6263001  1.       ]]
>>> print(np.corrcoef(matrix[1:,0], matrix[1:,1]).round(7))
[[1.         0.5553681]
[0.5553681  1.        ]]
>>> df = pd.DataFrame(matrix, columns=['X','Y'])
>>> df
X     Y
0  51.0  35.0
1  49.0  30.0
2  47.0  32.0
3  46.0  31.0
4  50.0  36.0
>>> df.rolling(4).corr(pairwise=True)
X         Y
0 X       NaN       NaN
Y       NaN       NaN
1 X       NaN       NaN
Y       NaN       NaN
2 X       NaN       NaN
Y       NaN       NaN
3 X  1.000000  0.626300
Y  0.626300  1.000000
4 X  1.000000  0.555368
Y  0.555368  1.000000

Scroll To Top