pandas.Series.to_json

Series.to_json(self, path_or_buf=None, orient=None, date_format=None, double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False, compression='infer', index=True)[source]

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

Parameters
path_or_bufstring or file handle, optional

File path or object. If not specified, the result is returned as a string.

orientstring

Indication of expected JSON string format.

  • Series

    • default is ‘index’

    • allowed values are: {‘split’,’records’,’index’,’table’}

  • DataFrame

    • default is ‘columns’

    • allowed values are: {‘split’,’records’,’index’,’columns’,’values’,’table’}

  • The format of the JSON string

    • ‘split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values]}

    • ‘records’ : list like [{column -> value}, … , {column -> value}]

    • ‘index’ : dict like {index -> {column -> value}}

    • ‘columns’ : dict like {column -> {index -> value}}

    • ‘values’ : just the values array

    • ‘table’ : dict like {‘schema’: {schema}, ‘data’: {data}} describing the data, and the data component is like orient='records'.

      Changed in version 0.20.0.

date_format{None, ‘epoch’, ‘iso’}

Type of date conversion. ‘epoch’ = epoch milliseconds, ‘iso’ = ISO8601. The default depends on the orient. For orient='table', the default is ‘iso’. For all other orients, the default is ‘epoch’.

double_precisionint, default 10

The number of decimal places to use when encoding floating point values.

force_asciibool, default True

Force encoded string to be ASCII.

date_unitstring, default ‘ms’ (milliseconds)

The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.

default_handlercallable, default None

Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.

linesbool, default False

If ‘orient’ is ‘records’ write out line delimited json format. Will throw ValueError if incorrect ‘orient’ since others are not list like.

New in version 0.19.0.

compression{‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}

A string representing the compression to use in the output file, only used when the first argument is a filename. By default, the compression is inferred from the filename.

New in version 0.21.0.

Changed in version 0.24.0: ‘infer’ option added and set to default

indexbool, default True

Whether to include the index values in the JSON string. Not including the index (index=False) is only supported when orient is ‘split’ or ‘table’.

New in version 0.23.0.

Returns
None or str

If path_or_buf is None, returns the resulting json format as a string. Otherwise returns None.

See also

read_json

Examples

>>> df = pd.DataFrame([['a', 'b'], ['c', 'd']],
...                   index=['row 1', 'row 2'],
...                   columns=['col 1', 'col 2'])
>>> df.to_json(orient='split')
'{"columns":["col 1","col 2"],
  "index":["row 1","row 2"],
  "data":[["a","b"],["c","d"]]}'

Encoding/decoding a Dataframe using 'records' formatted JSON. Note that index labels are not preserved with this encoding.

>>> df.to_json(orient='records')
'[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]'

Encoding/decoding a Dataframe using 'index' formatted JSON:

>>> df.to_json(orient='index')
'{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}'

Encoding/decoding a Dataframe using 'columns' formatted JSON:

>>> df.to_json(orient='columns')
'{"col 1":{"row 1":"a","row 2":"c"},"col 2":{"row 1":"b","row 2":"d"}}'

Encoding/decoding a Dataframe using 'values' formatted JSON:

>>> df.to_json(orient='values')
'[["a","b"],["c","d"]]'

Encoding with Table Schema

>>> df.to_json(orient='table')
'{"schema": {"fields": [{"name": "index", "type": "string"},
                        {"name": "col 1", "type": "string"},
                        {"name": "col 2", "type": "string"}],
             "primaryKey": "index",
             "pandas_version": "0.20.0"},
  "data": [{"index": "row 1", "col 1": "a", "col 2": "b"},
           {"index": "row 2", "col 1": "c", "col 2": "d"}]}'
Scroll To Top