pandas.DataFrame.to_records

DataFrame.to_records(self, index=True, convert_datetime64=None, column_dtypes=None, index_dtypes=None)[source]

Convert DataFrame to a NumPy record array.

Index will be included as the first field of the record array if requested.

Parameters
indexbool, default True

Include index in resulting record array, stored in ‘index’ field or using the index label, if set.

convert_datetime64bool, default None

Deprecated since version 0.23.0.

Whether to convert the index to datetime.datetime if it is a DatetimeIndex.

column_dtypesstr, type, dict, default None

New in version 0.24.0.

If a string or type, the data type to store all columns. If a dictionary, a mapping of column names and indices (zero-indexed) to specific data types.

index_dtypesstr, type, dict, default None

New in version 0.24.0.

If a string or type, the data type to store all index levels. If a dictionary, a mapping of index level names and indices (zero-indexed) to specific data types.

This mapping is applied only if index=True.

Returns
numpy.recarray

NumPy ndarray with the DataFrame labels as fields and each row of the DataFrame as entries.

See also

DataFrame.from_records

Convert structured or record ndarray to DataFrame.

numpy.recarray

An ndarray that allows field access using attributes, analogous to typed columns in a spreadsheet.

Examples

>>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]},
...                   index=['a', 'b'])
>>> df
   A     B
a  1  0.50
b  2  0.75
>>> df.to_records()
rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
          dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')])

If the DataFrame index has no label then the recarray field name is set to ‘index’. If the index has a label then this is used as the field name:

>>> df.index = df.index.rename("I")
>>> df.to_records()
rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
          dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')])

The index can be excluded from the record array:

>>> df.to_records(index=False)
rec.array([(1, 0.5 ), (2, 0.75)],
          dtype=[('A', '<i8'), ('B', '<f8')])

Data types can be specified for the columns:

>>> df.to_records(column_dtypes={"A": "int32"})
rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
          dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')])

As well as for the index:

>>> df.to_records(index_dtypes="<S2")
rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)],
          dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')])
>>> index_dtypes = "<S{}".format(df.index.str.len().max())
>>> df.to_records(index_dtypes=index_dtypes)
rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)],
          dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')])
Scroll To Top