pandas.DataFrame.from_dict

classmethod DataFrame.from_dict(data, orient='columns', dtype=None, columns=None)[source]

Construct DataFrame from dict of array-like or dicts.

Creates DataFrame object from dictionary by columns or by index allowing dtype specification.

Parameters
datadict

Of the form {field : array-like} or {field : dict}.

orient{‘columns’, ‘index’}, default ‘columns’

The “orientation” of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass ‘columns’ (default). Otherwise if the keys should be rows, pass ‘index’.

dtypedtype, default None

Data type to force, otherwise infer.

columnslist, default None

Column labels to use when orient='index'. Raises a ValueError if used with orient='columns'.

New in version 0.23.0.

Returns
DataFrame

See also

DataFrame.from_records

DataFrame from ndarray (structured dtype), list of tuples, dict, or DataFrame.

DataFrame

DataFrame object creation using constructor.

Examples

By default the keys of the dict become the DataFrame columns:

>>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data)
   col_1 col_2
0      3     a
1      2     b
2      1     c
3      0     d

Specify orient='index' to create the DataFrame using dictionary keys as rows:

>>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data, orient='index')
       0  1  2  3
row_1  3  2  1  0
row_2  a  b  c  d

When using the ‘index’ orientation, the column names can be specified manually:

>>> pd.DataFrame.from_dict(data, orient='index',
...                        columns=['A', 'B', 'C', 'D'])
       A  B  C  D
row_1  3  2  1  0
row_2  a  b  c  d
Scroll To Top