Table Of Contents

Search

Enter search terms or a module, class or function name.

pandas.DataFrame.rename

DataFrame.rename(mapper=None, index=None, columns=None, axis=None, **kwargs)[source]

Alter axes labels.

Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error.

See the user guide for more.

Parameters:

mapper, index, columns : dict-like or function, optional

dict-like or functions transformations to apply to that axis’ values. Use either mapper and axis to specify the axis to target with mapper, or index and columns.

axis : int or str, optional

Axis to target with mapper. Can be either the axis name (‘index’, ‘columns’) or number (0, 1). The default is ‘index’.

copy : boolean, default True

Also copy underlying data

inplace : boolean, default False

Whether to return a new %(klass)s. If True then value of copy is ignored.

level : int or level name, default None

In case of a MultiIndex, only rename labels in the specified level.

Returns:

renamed : DataFrame

Examples

DataFrame.rename supports two calling conventions

  • (index=index_mapper, columns=columns_mapper, ...)
  • (mapper, axis={'index', 'columns'}, ...)

We highly recommend using keyword arguments to clarify your intent.

>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename(index=str, columns={"A": "a", "B": "c"})
   a  c
0  1  4
1  2  5
2  3  6
>>> df.rename(index=str, columns={"A": "a", "C": "c"})
   a  B
0  1  4
1  2  5
2  3  6

Using axis-style parameters

>>> df.rename(str.lower, axis='columns')
   a  b
0  1  4
1  2  5
2  3  6
>>> df.rename({1: 2, 2: 4}, axis='index')
   A  B
0  1  4
2  2  5
4  3  6
Scroll To Top